A COUPLING FACTOR FROM RHODOSPIRILLUM RUBRUM CHROMATOPHORES

Bo. C. JOHANSSON

Bioenergetics Group, Department of Plant Physiology and Department of Biochemistry, University of Stockholm, Lilla Frescati, S-104 05 Stockholm 50, Sweden

Received 26 November 1971

1. Introduction

A coupling factor from the photophosphorylation system of *Rhodopseudomonas capsulata* has recently been isolated [1]. By using a slightly modified procedure, as compared to that used on *Rps capsulata*, on *Rhodospirillum rubrum* chromatophores, a protein factor which seems to be necessary for photophosphorylation and Mg-ATPase activities, has been solubilized. The factor is supposed to be involved in the coupling mechanism.

2. Materials and methods

R. rubrum cells (strain S1) were grown and harvested and chromatophores prepared according to methods described earlier [2]. Photophosphorylation [3] and ATPase [4, 5] activities were assayed by standard methods. Protein was determined by the Biuret method. The protein factor was solubilized and reconstituted as is shown in fig. 1. Further details are given under the tables.

3. Results and discussion

After sonication in the cold and separation of supernatant, photophosphorylation and Mg-ATPase activities of the particles were depressed to 15-50% of the original values. Restoration of photophosphorylation and Mg-ATPase was obtained after incubation of treated particles together with super-

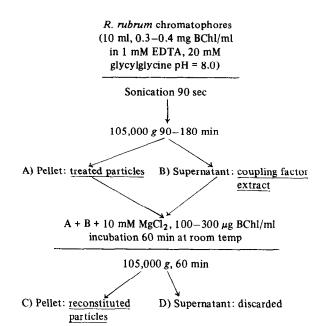


Fig. 1. Procedure for solubilization and reconstitution of coupling factor.

natant and 10 mM MgCl₂ for 1 hr at room temp. The parallelism observed between photophosphorylation and Mg-ATPase activities, as induced by the sonication and reconstitution treatments (table 1), seems to indicate a coupling factor effect at the energy transfer level.

The degree of restoration was clearly a function of the amount of supernatant added. With 2 equivalents of supernatant, a photophosphorylation value exceeding that of the untreated particles was obtained (table 2).

Table 1
Effects of removal and restoration of coupling factor on photophosphorylation and ATPase activities.

Treatment of chromatophores	Photophos- phorylation activity	MgATPase activity
	(%)	(%)
(1) None	100	100
(2) Sonication (3) As (2), but with an equivalent amount of supernatant and	24	26
10 mM MgCl ₂ added	62	74

Reaction medium for photophosphorylation: 0.1 M glycylglycine pH 7.4, 3×10^{-4} M ATP, 3×10^{-4} M Na₂HPO₄ containing ³²P, 10^{-2} M MgCl₂, 3×10^{-4} M Na succinate, excess hexokinase, chromatophores to a final conc. of A₈₀₀ = 0.2 in a total vol of 3 ml. 6 min exp. at 30°. Untreated particles: 58 μ moles ATP formed/hr \times A₈₀₀. Reaction medium for ATPase: 5×10^{-2} M Tris-HCl pH 7.5, 5×10^{-3} M MgCl₂, 5×10^{-3} M ATP, chromatophores in a final conc. of A₈₀₀ = 1.0. Total vol 1 ml. 10 min exp. at 30°. Untreated particles: 4.8 μ moles ATP hydrolyzed/hr \times A₈₀₀.

The protein nature of the factor responsible for the reported changes was shown by its sensitivity to trypsin treatment (table 3).

Effects of the protein factor on cytochrome b reduction and carotenoid band shift as induced by ATP or PP_i in the dark, as well as on electron transport control in this system have now also been demonstrated [6]. The carotenoid data further support the concept that the coupling factor effect is at the energy transfer level.

Acknowledgements

This work was supported by the Natural Sciences Research Council to Prof. H. Baltscheffsky. I thank Prof. H. Baltscheffsky and Dr. M. Baltscheffsky for helpful advice and support and Dr. D.E. Geller for kind advice.

Table 2
Restoration of photophosphorylation as a function of added amount of supernatant.

Supern (ml)	atant added (equivalents)	Phorophosphorylation (% of untreated)
0	0	39
0.5	0.25	57
1.0	0.5	74
2.0	1.0	85
4.0	2.0	112

Reaction medium for photophosphorylation: as in table 1. Untreated particles: 46 μ moles ATP formed/hr \times A₈₀₀.

Table 3
Specific effect of trypsin on coupling factor.

Treatment	Photophosphorylation activity (%)
(1) Untreated	100
(2) Sonicated	50
(3) Reconstituted	94
(4) As (3) but trypsin treated supernatant	52
(5) As (4) but with soybean inhibitor	90 -

Reaction medium for photophosphorylation: as in table 1. Trypsin treatment: coupling factor supernatant was incubated with 320 μ g trypsin/mg protein for 10 min at 30°. Digestion was stopped by addition of soybean inhibitor to a final conc. of 1290 μ g/mg protein. Control (5): supernatant incubated with trypsin + soybean inhibitor.

References

- A. Baccarini-Melandri, H. Gest and A. San Pietro, J. Biol. Chem. 245 (1970) 1224.
- [2] H. Baltscheffsky, Biochim. Biophys. Acta 40 (1960) 1.
- [3] O. Lindberg and L. Ernster, in: Methods of Biochemical Analysis, Vol. 3, ed. D. Glick (1954) p. 1.
- [4] T. Kuttner and H.R. Cohen, J. Biol. Chem. 75 (1927) 517.
- [5] T. Kuttner and L. Lichtenstein, J. Biol. Chem. 86 (1930)
- [6] B.C. Johansson, M. Baltscheffsky and H. Baltscheffsky, II International Congress on Photosynthesis Research, Stresa 1971, to be published.